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Heat and mass transfer in stationary binary gas mixtures in which
periodic oscillations are induced Is analytically investigated,

Steady-state problems of isothermal diffusion and
heat conduction in stationary binary gas media are
examined and the problem of heat and mass transfer
with due regard to the concurrent effects of heat and
mass transfer is solved. The solutions presented are
obtained by the impedance method (the theory of pas~
sive quadripoles developed by Kovalenkov {3] and suc-
cessfully applied by Grizodub [1]) in an examination
of wave processes in pneumatic and hydraulic systems,
The following method of calculating periodic wave
processes of heat and mass transfer occurring simul-
taneously in a simple tube provides a means of analyz-
ing harmonic oscillations of gas in thermal diffusion,
thermal, and diffusion systems.

Isothermal mass transfer in nonreacting binary
gas mixtures. The considered diffusion system is a
bounded thermally insulated tube of constant cross
section with a source of mass of substance of the 1st
kind at one end (x = 0) and a consumer of this sub-
stance at the other end {x =1).

We solve the one-dimensional problem for the case
where periadic oscillations of concentration and mass
flux are imposed on the system (problem without ini-
tial conditions), i.e., when

c=Cexpli(o,7 +¢y)l, m=Mexpi(w,T + P))-

Mass transfer in a nonreacting binary gas mixture
is described by the well-known equations [4]
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——— == ——— M
dx pDF
e Ldm 8
dt oF ox

where p and D are assumed constant,

The last two eguations for steady-state periodic
oscillations can be put (if ¥ = @) in the following
form:

— L = — M,
dx o DF
1 dM
—iw, 0= — —. 2
o, oF dr (2)

We assign boundary conditions in the form

when x =0 C=0C,, M =My
€

when x =1 ZIC: ,
‘ M,

where Z% is the end impedance (resistance), i.e., the

total mass resistance offiered by the medium to the

propagation of mass from point x = 0 to point x =] (in

the general case Zp is a complex quantity, since o *
The solution of Egs. (2) has the form

C = Achycx+ Bshyex,

1
ZxC

M=-—

(Ashy, x + B chy.x). (4)

where A and B are constants of integration; y¢ is the
mass propagation constant:

e
ve=0+0) 55 (5)
Zyc 18 the mass characteristic resistance (impedance):

feom ——t e ()
pFV 20cD

We find the constants of integration from the bound-
ary conditions and on substituting them in {4), we ob-
tain

C =Cychy.x — My Zie sSh o %,

M= —Y . Cpshy x+ M,chy.x. (7)

where Y, 18 the mass characteristic admittance,
The initial mass impedance

Zoc=Cy/ M, (8)

can be represented easily in the following form by using
the transfer impedance {1]:

ZUC = LyC th(\)cl + k(;),
ko= arth ZL Yoo . (9)
Expression (9) connects the diffusion system with its
boundary conditions.
Using relationships (7) and (9) we can write the

obvious equation for the mass impedance at an arbi-
trary point x:

Zz = Ze thiye (1—x) + k. (10)

The values of (8) and (9) for the initial mass impe-
dance enable us to put expression (7) in the form

C = Cylchy,x—cthiy, ! + k. )sh y.xl,
C = M, Zuc [thiy ! + k;)ch vy x —shyexl (11)
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M = M,{chy x —th(y,l -+ k;)shy.x],

M=CY

oY o lethive i+ & )chyox —shyox]. (12)

From formulas (11) and (12) we can find the amplitudes
of the oscillations of concentration and mass flux at an
arbitrary point x in steady-state conditions.
Steady-state heat conduction in a nonreacting binary
gas mixture. We consider the thermal system. The
difference between this system and the diffusion system
considered above is the presence of a heat source (no
mass source) at x = 0 and a heat sink at x =1, We will
solve the one~dimensional problem of heat transfer
for the case where periodic oscillations of temperature
and heat flux are induced in the thermal system (prob-
lem without initial conditions), i.e., when

t=Texpli (0,7 +¢;)l; ¢ =Qexpli(w; T+, )]

We assign the boundary conditions in the form
whenx=0 T=T; and Q = Q;

and at x = [ the end impedance, which is the total
thermal resistance offered by the medium to the prop-
agation of heat from point x = 0 to point x = (in the
general case the thermal resistance is complex, since
oT #d7):

ZL=T,/Q, .

The propagation of heat is described by the well-
known equations [4]

_o 1
0x AF 7

_o __1 9 (13)
0v  cpF 0x

where Cps P> and A—the specific heat, density, and
thermal conductivity, respectively—are assumed to be
constant.

Equations (13) for the propagation of heat are exactly
analogous to Egs. (1), which describe mass transfer.
Hence, the solution. of Egs. (1) can be used for the solu~
tion of Egs. (13), since even the boundary conditions
for the two processes are analogous. Then, using ex-
pressions (5), (6), and (9)—(12) we can write

T =T, [chy, x—cth (v, | + &, )shy,x],

T=Q,Z, [thy, !+ k) chy,x—shy.x}; (14)

Q=Qq,lchy,x —th(y.l+ &, )shy,x],

Q=T,Y, [cth (v,! + k)chy, x—shy,x]. (15)

" Here YT is the heat propagation constant:

WL, P
—a /_LL
vy =(1 41 o

ZxT = 1/YxT is the characteristic impedance,

(18)

1—i

o= TT—————
VQAcmpme
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25 =Z iy, —x) + &, ),

k, =arthZL Y .. amn

Thus, in the case of steady-state heat transfer the
amplitudes of the temperature and heat flux oscilla-
tions at an arbitrary point x can be found from expres-
sions (14) and (15).

Heat and mass transfer in stationary nonreacting
binary gas mixtures. We consider the more general
process of propagation of steady-state periodic oscil-
lations of temperature, concentration, heat flux, and
mass flux for a mixture of gases in the absence of
external forces and friction forces. .

The difference between this thermal diffusion sys-
tem and the thermal and diffusion systems considered
above is that at one end of the tube (x = 0) there is a
mass and heat source, and at the other end there is a
mass and heat sink.

The one-dimensional process of concurrent prop-
agation of heat and mass is described by the differen~
tial equations [2]

bF(dc k, dt)
mE=—eilm T &)
g —nF Y _FDP  do (18)

a
dx 1% dx

where pg=p'c +uc', p, D, kp/t, P, A, and « are as-
sumed to be constants.

We obtain the solution of the problem of propaga-
tion of periodic oscillations in a system in which peri-
odic oscillations of concentration, temperature, mass
flux, and heat flux are induced (problem without ini-
tial conditions).

The boundary conditions in the considered case will
be as follows:

when x =0, T=T,, @=Q, C = Cpand M = M;
when x =1, Zhe=T,/Q, and Zir=C/M,

where the end impedance ZgI‘C (when ¢q = ¥p) is the
total thermal resistance offered by the medium to the
propagation of heat, including heat transfer due to the
concentration gradient, and the end impedance ZlCT
(when ¢~ = ¥) is the total mass resistance of-
fered by the medium to the propagation of mass,
including mass transfer due to the temperature gra-
dient. ,

For steady-state periodic oscillations expressions
(18) will take the form (when ¢ = ¥q, @1 =¥ wg =
= wr)

dac - dar
= —D¢c——-Dr —,
cdx de
dr dc
= —Ar — —hAc —, 19
(i? Ty ¢ dx (19)

where
ky
D¢c=pDF, Dr = D¢ 5 eXP(CPC—‘”*IJT)’ hp=AF,

A = PFa

exp (e — )

g
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We write total differentials for the concentration
and temperature functions, assuming ¢ = e[m(x, 7,
qx, 91, t=tmx, 19, g N):

il dc
d N d — dm,
¢ (aq\)m 7 (am)q

/ 9t ot '
dt = () dg+ _.) dm.
(0(7 “)mdq <6m q
If we assume that heat propagation does not affect
the frequency of the concentration and mass flux and,
conversely, diffusion does not affect the frequency of
the temperature and heat flux, then for the case of

steady-state periodic oscillations the last two equations
can be put in the following form:

©= (@ o (i)

T T
T = | = rm— M.
(Q )M=0Q+ (M)Q=0

The complex (C/Q)y=g = Ay1(x) is the ratio of the .
amplitude of the oscillations of concentration of the
first kind of substance, the change of which along the
tube is due entirely to the heat flux (in the absence of
mass flux), to the amplitude of the oscillations of this
fiux. This relationship is characterized by the Soret
effect [2].

The value of the amplitude of the concentration oscil-
lations in the absence of mass transfer (M = 0) is found
from expression (19) with M = 0. Then function Ay (x),
in view of what has been said, takes the form

= [P0 0eC

(20)

oo 2D
where T and Q are the amplitudes of the oscillations of
the gas temperature and heat flux, respectively, at an
arbitrary point in the absence of mass transfer (M = 0).

To determine the amplitudes T and § we can ob-
viously use Egs. (14) and {15). In view of what was said
above, expression (21) can be written as

Ay x) = (DT {I—(chy, x —cth (v, ]+
+1k) shyp 2] + D CyTy)
x(Dg¥,r leth (v, L+ ) ey, x—shy,21) 7, (22)

where
ky=arth 2, Y, .

The values of the heat propagation constant ¥ and the
characteristic thermal impedance Zy are given by
expressions (16) and (17). The complex (C/M)qmp =

= Ay,(x) is the mass impedance of the thermal diffusion
system in the case of absence of heat transfer (Q = 0),
i. e., when we are justified in using formula (10) for
the mass impedance of the diffusion system

Ap () = Z v (0 — %) + k), (23)

where
ky = arth ZLAY .
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Constants v, and Z‘XC are given exactly by expressions
(5) and (6).

By similar arguments we can obtain values for the
other two complexes:

T

(‘...) = Agy (%) = Z thiy, . —x)+ A1, (24)
@ M=o
T
2 A0 =
(M\)Q-u(} 28 (%)
e {I—lchvgx—cth{v ! + ko) shy a1} + A To/Cy’ (25)

A Y leth(v, i+ kyehy, x —shy, 2]
Referring to (22)—(25), we obtain from (20)

C=An(x)Q+ A M,
T = Ay () Q + Agg (¥) M.

The last two equations and the solution of Egs. (19)
form a system of four equations with four unknowns.
The solution of this system is as follows:

M =(Ty 1Ay (¥ a— x Dr] — Cy[Ay (¥) @ + xDc )X
X (N ()a—x [x 4 D Ap (%) +
+ DAy (0) + dg A (9) + 2 A (0)1)

Q= (ColAn®a—xAJ —To Ay (x) a+ x A}
x(N (%) @ —x [x + DAy (x)+
+ Dy A (1) + Ay An (5) + Ao An (1)
C=A4;(%)Q+ Ap(x) M,

T=2A4,xQ+ Agp () M, (26)

where
a= Dy, — kD,

N (x) = Ay (x) Agy (x) — Ay (%) App ().

Thus, the amplitudes of the oscillations of the heat
and mass fluxes and the amplitudes of the concentra-
tion and temperature oscillations at an arbitrary point
x of the thermal diffusion system are given by expres-
sions (26), in which the functions are found from
formulas (22)—(25).

Example. Find the distribution of the amplitude of
the oscillations of carbon dioxide concentration in a
binary mixture of CO, and NO, of the diffusion system
considered at the beginning of this paper, if the known
values are; Co=0.8, p=1kg/m®, F=10""m? 1 =
= 0,6 m, Zé =17+ 10° sec/kg, D = 9.6 107% m?/sec,
we =0.192-10 7% Hz.

‘Solution. Substituting the known values of the prob~
lem in expressions (5) and (6) and using the tables forhy-

" perbolic functions we calculate the propagation constant

.. /0.192.10—2 .
Yc’*(1+l)l/ W=l@(l+-l) I/m,
the characteristic impedance
7 = 1—i _
* " 1/2.9.6.10-5.1.10-%.0.192. 10—
=5.2.10° (1— i) 'sec/ke,
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the quantity
cth (vl + 4,) = cth[10(1+7)-0.6 +

farth7.108 — L~

52.100(1 —i)
Then the first expression of relationship (11) can be
put in the following form:

C=08[ch10(1+)x— 1-sh10(14+0i)x] =
= 0.8 exp (—10x)(cos 10x -+ sin 10x).

For instance, for x =0.1 m, C = 0.272.

NOTATION

c and C are the concentration and amplitude of con-
centration oscillations, respectively, of 1st kind of gas;
m and M are the mass flux and amplitude of mass
flux oscillations for 1st kind of gas; t and T are the
temperature of mixture and amplitude of temperature
oscillations; gand Q arethe heat fluxand amplitude of
heat flux oscillations; P is the pressure; p is the den-
sity; A is the thermal conductivity; ¢, is the specific
heat; D is the diffusion.coefficient; km is the thermal
diffusion coefficient; « is the thermal diffusion factor;
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p and u' are the molecular weights of 1st and 2nd kinds
of gas; c' is the concentration of 2nd kinds of gas; wp
is the frequency of oscillations of temperature and
heat flux; w( is the frequency of oscillations of con-
centration and mass flux; ¢ and @ are the initial
phases for heat flux and temperature; ¥ and ¢ are
the initial phases for mass flux and concentration; F
is the cross-sectional area; x is the coordinate; 7 is
time; i = (=1)!72,
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